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1. Loops => domains => fluctuations in <p_t>

2. Why “extra” Z(3) symmetry?

3. Polyakov loops & Z(3)

4. Polyakov loop model: pressure, Z(3) magnetization...

π’s vs K’s vs p’s...    y vs θ vs ...

Single particle spectra: always appear “thermal”
Fluctuations essential to test true nature of particle prod.



QGP and Particle Production

Usually: Quark-Gluon Plasma => “nearly”  ideal quarks and gluons

Lattice data + phen. models => probably ok down to 2-3 Tc

We argue: fails for Tc => (2-3) Tc: transition region dominated by
collective excitations (”Polyakov loops”) 

For now: merely assume pressure near Tc dominated by some
collective field

So?  Then hadronization is not:  
recombination of quarks & gluons
“parton-hadron” duality (1 gluon ≈ 1 pion; what about K’s?)

Hadronization is controlled by the nature of the deconfined phase
just above, and below, Tc.



Domain Picture of Particle Production
Assume: particles produced by

domains ≈ 1 fm in size

in each domain, large fluctuations in <p_t>,  ≈ 10%.    

domains gluonic; i.e., flavor blind;
production uncorrelated between different domains.

In the Polyakov loop model:

domain size = 1/(mass of loop at T_c)

by construction, loop is gluonic, so flavor blind

Loop field decays into pions, kaons... because
     it is only light at T_c, gets heavy above and below T_c

causality => uncorrelated domains



Fluctuations in Pion <p_t> from Domains

Attempt to give model “independent” analysis of fluc.’s in <p_t> from
domain model.  Always: explicit parameters taken from loop
model; these could be different, but not vastly.

Basic parameters:

Scale factor “a” at T_c: 
longitudinal length in beam direction = a(T_c) x rapidity window
Bjorken expansion: a ~ τ = proper time.

dN/dy ~ (density π’s at T_c) π R^2 a(T_c)

RHIC: a(T_c) ~ 10 fm, R(T_c) ~ 10 fm.

# domains =  π R^2 a(T_c)/(size each domain) ≈ 300 domains

Fluc.’s in <p_t> = fluc.’s in each domain/√# domains ≈ .6 %



Fluctuations in <p_t> from domains

Fluctuations in <p_t> increase as # domains decrease

                 total fluc.’s ~ 1/√# domains.

Fluctuations increase with finer bins:

smaller width in rapidity: for 1/4 unit rapidity, fluc.’s x 2.

could also bin in azimuthal angle, φ.

             (moments in φ?)
vs centrality: fewer domains in peripheral => bigger fluc.’s

dN/dy = # domains => fluc.’s ~ √dN/dy.

Model does not apply for very peripheral (ie, pp) collisions.



Kaon Fluctuations

No detailed calculations, so make general comments:

In pp collisions, K/π ~ 10%;  K/π ~ 15% for most central coll’s @ RHIC
Large increase in K <p_t>, ~ increase in transverse flow

Assume condensate field produces hadrons:

Domains with larger K/π ratio should have more energetic K’s;
domains with smaller K/π, less energetic K’s.

Correlations between fluctuations in K/π, <p_t> for different species,
tell us very detailed properties of particle production.

Need sufficient statistics to compute fluctuations in many variables.

Using smaller bins (in rapidity, angle, etc) will help enhance fluc.’s 



Dynamical Kaon Production
Scavenius, Dumitru, & Lenaghan ‘01

Semiclassical production of pions, kaons... by coupling to loop.

Originally, K/π ratio large, then decreases due to kaon mass:

K/π ratio  ↑
  (solid line)

η/& ratio
   (dashed line)

-  .5

-  .15

time →
Different domains will exist with spread in K/π ratio, K <p_t>, etc.



Approximate symmetries

Why we know there is chiral symmetry: pions (K’s...) are light.

Usual manifestation of approximate symmetry, when the symmetry
is broken in the ground state.

Chiral symmetry broken in the low temperature phase, so pions...
remain light until the symmetry is restored, T < T_c.

Z(3) gluonic symmetry: the symmetry is only broken in the 
deconfined phase, T > T_c, and not in the confined phase.

Hence not apparent in the spectrum of confined particles; one has
to go near the transition.

About the transition, and only there,
the field for the Polyakov loop is light.  Unlike most broken sym.’s.



Z(3) symmetry
 
Consider gauge theory with out dynamical quarks.

Add “test” quarks.  For each, additive quantum number.

Confinement => states are neutral under this new quantum #

+1 for each quark, -1 for each anti-quark.  
Meson: +1 - 1 = 0, so possible state.

Baryon = 3 (+1) = 3.  So define quantum number modulo 3.
Then baryon charge 0, possible state.

Easier way: each test quark has phase e2πi/3

Meson: e−2πi/3e2πi/3 = 1 Baryon:

(
e2πi/3

)3
= 1

Confinement => only states with phase = 1 can propagate.



Global Z(3) from Local SU(3)
These phases form a group of Z(3). 

‘t Hooft (’79): this global Z(3) is part of a local SU(3) (c/o quarks!)

Take gauge transformation

Perfectly fine gauge transformation for SU(3) gauge theory:

Ω†Ω = 1 , det(Ω) = 1

N.B.: det = 1 is same condition as baryon is neutral 

Only 3 phases possible: transf. must be same everywhere => global  sym.

Gluons don’t change!

Test quarks do:

Aµ → Ω†AµΩ = exp(−2πi/3)Aµ exp(2πi/3) = Aµ

qtest → exp(2πi/3)qtest

Ω = exp(2πi/3)



Test Quarks
Even though we have a theory without dynamical quarks, we can still

speak of test quarks. 

Suppose one puts, by hand, an infinitely massive quark at some point x.
All it can do is propagate up in time (= imaginary time at T ≠ 0)

This test quark still carries color, though, which it can exchange with
the medium.  Thus we can use it to probe how the system
responds to an external source.  

L = P exp

(
ig

∫ 1/T

0
A0 dτ

)Wilson line = color Aharonov-Bohm phase = propagator of test quark:



Polyakov Loops

Wilson line = color matrix, so cannot be gauge invariant.

To form gauge invariant quantity, take color trace = 

Polyakov loop: ! =
1
3

tr L

This is the trace of the propagator for the test quark.

time ↑

It is a loop, because in (imaginary) time, you start and end at the same
place (periodic boundary conditions in imag. time for bosons)

0

1/T



Test Quarks and Z(3)

test anti-quark = test quark going back in
(imag.) time 

= L†

test meson = 
test quark +
test anti-qk.

test di-quark =
two test quarks

test baryon = three test quarks

and so on.  group
theory = ways of
combining test 
quarks & anti-quarks



Test Quarks, Loops, and Z(3)

Under the global Z(3), each test quark transforms like one Z(3) factor:

L → e2πi/3 L

Test anti-quarks must (of course) transform in the opposite way, as

L† → e−2πi/3 L†

Loops are just traces, so don’t change the Z(3) charges:

!qk → e2πi/3!qk !qk → e−2πi/3!qk

!di−qk → e4πi/3!di−qk = e−2πi/3!di−qk

!meson → !meson !baryon → !baryon

Test mesons and baryons have no Z(3) charge, so don’t change:

⇔



Confinement and Z(3)

Confinement => quarks don’t propagate.  So:

〈!〉 = 0 , T < Tdeconf

That is, the expectation value of the (triplet) loop is an order parameter!

Conversely, deconfinement => quarks do propagate:

〈!〉 #= 0 , T > Tdeconf

= temperature for the deconfining phase transition.Tdeconf

Loops for test anti-quarks, and test di-quarks, are also zero below T_d.

Loops for test mesons and baryons can be non-zero at any temperature,
at least in principle.



Histograms of Loops: Confined Phase
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Confined phase: expectation of loop = 0.

(Axes real and imaginary parts of loop; height ~ probability.)



Histogram of Loops: Deconfined Phase
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Deconfined phase: three degenerate vacua for broken Z(3) symmetry.



From Bare to Renormalized Loops

Even infinitely massive (test) quarks have mass renormalization ~1/a,
a = lattice spacing.  Still, can extract renormalized loops from bare:
                      
(Dumitru, Lenaghan, Hatta, Orginos, & RP ‘03)

Measured following loops for three colors, NO dyn. quarks:

test quark = triplet;   test anti-quark = anti-triplet

test di-quark = sextet

test meson = octet     test baryon = decuplet

Long song and dance.  Relatively simple understanding of the results.

(Ren.’d triplet loop similar, not identical, to Bielefeld prescription.)



Renormalized Loops from the Lattice

Ren.’d   ↑ 
Loops

test quark 
= triplet

test meson 
= octet

test di-quark
= sextet

(Looked for test
baryon, too small
for tech. reasons



Lattice Ren.’d Loops: cont.’d
See no signal for “test meson” below T_d:

Polyakov loops appear to dominate for all temperatures

Phen.’y: coupling of Polyakov loops to mesons, baryons, dominate 
particle production (with dynamical quarks)

Technical details: find sextet, octet loops ≈ triplet loop squared.

Gives qualitative measure that three colors is close to an infinite number,
in terms of 1/N expansion (N = # colors).

Also shows that an effective theory with triplet + small admixture of
sextet loop is a very good approximation.



What about dynamical quarks? 

p/pideal(T/Tc) ≈ universalLattice finds remarkable result:

pressure/
ideal pressure

T/T_c =>

Flavor independence: 

Bielefeld

pressure with dynamical quarks ~ that without

Due to dominance by Polyakov loops?   Need ren.’d loops with dynamical qks!


